Metabolic Engineering of 3-Hydroxypropionic Acid Biosynthesis in Escherichia coli

Hun Su Chu, Young Soo Kim, Chan Mu Lee, Ju Hee Lee, Won Seok Jung, Jin-Ho Ahn, Seung Hoon Song, In Suk Choi, Kwang Myung Cho
Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea; telephone: 82-31-8061-1480; fax: +82-31-8061-1315; e-mail: km3.cho@samsung.com

Abstract

Hydroxypropionic acid (3-HP) can be produced in microorganisms as a versatile platform chemical. However, owing to the toxicity of the intermediate product 3hydroxypropionaldehyde (3-HPA), the minimization of 3HPA accumulation is critical for enhancing the productivity of 3-HP. In this study, we identified a novel aldehyde dehydrogenase, GabD4 from Cupriavidus necator, and found that it possessed the highest enzyme activity toward 3-HPA reported to date. To augment the activity of GabD4, several variants were obtained by site-directed and saturation mutagenesis based on homology modeling. Escherichia coli transformed with the mutant GabD4_E209Q/E269Q showed the highest enzyme activity, which was 1.4 -fold higher than that of wild type GabD4, and produced up to $71.9 \mathrm{~g} \mathrm{~L}^{-1}$ of 3HP with a productivity of $1.8 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$. To the best of our knowledge, these are the highest 3-HP titer and productivity values among those reported in the literature. Additionally, our study demonstrates that GabD4 can be a key enzyme for the development of industrial 3-HP-producing microbial strains, and provides further insight into the mechanism of aldehyde dehydrogenase activity. Biotechnol. Bioeng. 2015;112: 356-364.

© 2014 Wiley Periodicals, Inc.
KEYWORDS: aldehyde dehydrogenase; GabD4; glycerol; 3-hydroxypropionic acid (3-HP)

Introduction

The production of biodiesel is becoming crucial in light of diminishing petroleum reserves and enhanced environmental concerns due to global warming. The rapid growth of the biodiesel industry has led to the generation of vast amounts of

[^0]crude glycerol as a biodiesel by-product, resulting in a dramatic decrease in crude glycerol prices (Forrest et al., 2010). Significant research efforts have been made to produce high value-added products from biodiesel-derived crude glycerol; thus, the biological conversion of crude glycerol into high-value biochemicals has become a highly active field of study (Nitayavardhana and Khanal, 2011). The utilization of several renewable materials has been proposed; these include succinic acid, lactic acid, and 3-hydroxypropionic acid (3-HP), which advantageously can be produced via biological methods. 3-HP is a 3-hydroxy isomer of lactic acid and is an important building block in the synthesis of many industrially valuable chemicals. This platform chemical is one of the top 12 renewable building blocks (Werpy and Petersen, 2004); thus, great attention has been paid to the microbial conversion of glycerol to 3-HP (True and Lindquist, 2000). The bifunctionality of 3-HP allows its conversion to many chemical intermediates, including malonic acid, 1,3-propandiol, acrylic acid, propiolactone, 3-hydroxymethyl-propionate, and several polymers (Fig. 1). Acrylic acid is a commercially valuable chemical with a $\$ 6$ billion global market, and can be derived from 3-HP by catalytic reactions. However, the thermal instability of 3-HP makes its synthesis via chemical reactions difficult (Vollenweider and Lacroix, 2004). The biological conversion of glycerol to 3-HP can be a good alternative to chemical conversion, as glycerol is nontoxic to many microorganisms including Escherichia coli even at high concentrations. 3-HP can be biologically produced by a two-step enzyme reaction: the conversion of glycerol into 3-hydroxypropionaldehyde (3-HPA) by glycerol dehydratase and the oxidation of 3-HPA into 3-HP by aldehyde dehydrogenase. Many reports have demonstrated that imbalanced activity between dehydratase and dehydrogenase is a major limiting factor in 3-HP production and 3-HPA accumulation above 30 mM caused by the imbalance is harmful to host cells, eventually inhibiting 3-HP production (Slininger et al., 1983). For this reason, the discovery of a novel aldehyde dehydrogenase with high enzyme activity will be necessary to reinforce the

Figure 1. Various building blocks from 3-HP.
flux from 3-HPA to 3-HP and to adjust balance between dehydratase and dehydrogenase.

In this work, we successfully identified a novel aldehyde dehydrogenase, GabD4 derived from Cupriavidus necator, by screening 17 candidate aldehyde dehydrogenases from several microorganisms. In addition, structural analyses based on the predicted structure model of GabD4 were carried out to determine the active site and key amino acid residues related to coenzyme binding. To improve the specific activity of the novel aldehyde dehydrogenase, gabD4 variants were obtained by site-directed and saturation mutagenesis based on homology modeling, and the enzymatic activities and 3-HP production levels of the variants were analyzed. This is the first report to show the feasibility of the biological production of 3-HP from glycerol at an industrial level, with a titer of $71.9 \mathrm{gL}^{-1}$ and a productivity of $1.8 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$.

Materials and Methods

Materials

A list of bacterial strains and plasmids used in this study is provided in Table I. E. coli strain DH5 α and the pETDuet-1 plasmid was purchased from Novagen (Madison, WI). T4 DNA ligase and restriction endonucleases were obtained from New England Biolabs (Beverly, MA). Plasmid DNA was purified using Spin Miniprep kits from Promega (Madison, WI). A gel extraction kit was purchased from Qiagen Inc. (Valencia, CA). 3-HP was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and 3-HPA was synthesized chemically from acrolein (Hall and Stern, 1950). Genetic manipulations were carried out according to standard methods (Sambrook et al., 2001). All other reagents were purchased from Sigma (St. Louis, MO) and used without additional purification.

Identification and Cloning of Aldehyde Dehydrogenase Genes in E. coli

Several candidate aldehyde dehydrogenases were selected by comparison with the reference amino acid sequence of E. coli aldH using the online basic local alignment search tool (BLAST). The alignment was then analyzed using ProtTest to determine which protein evolution model had the best fit for aldehyde dehydrogenase sequence alignment, and the corresponding crystal structures were downloaded from the PDB database. DNA segments encoding aldehyde dehydrogenase were amplified by PCR using pfu DNA polymerase (Stratagene, La Jolla, CA) and pairs of specific primers. The amplified genes (Table II) were digested with BamHI/Pst $\mathrm{I} \quad$ (pSPC1), NheI/PstI (pSPC11), NheI/XhoI (pSPC12), or NheI/KpnI (all others). Each of the digested fragments ($960-1560 \mathrm{bp}$) was ligated with a $\mathrm{p} \operatorname{TrcHis}$ vector containing the coding sequences for glycerol dehydratase ($d h a B$) and regeneration factor $(g d r A B)$, which is a molecular chaperone that participates in reactivation of the inactivated coenzyme B_{12} (Rathnasingh et al., 2009), from Klebsiella pneumoniae DSM2026. The resulting expression plasmids, each containing $d h a B, g d r A B$, and one of the candidate aldehyde dehydrogenase genes, were transformed into E. coli W3110.

Construction of E. coli Δ ackA-pta $\Delta y q h D$ Mutant Strains

Mutants lacking ackA-pta and $y q h D$ were generated using the Red/ET recombination system (Datsenko and Wanner, 2000). To construct the ackA-pta knockout, PCR was performed with two primers: 5^{\prime}-CGTAGTGATCGATGAGTCTGTTATTCAGGGTATC AAAGGTGTAGGCTGGAGCTGCTTC-3' (sense) and 5'-CAATCCCTGCACCCAGTTCTACACCCTGAGACGCTGA-TTCCGGGGATCCGTCGACC-3' (antisense). The oligonucleotide primers used to introduce the $y q h D$ mutation were

Table I. Bacterial strains and plasmids used in this study.
$\left.\begin{array}{lll}\hline \text { Plasmid or strain } & & \text { Relevant characteristics }\end{array}\right]$ Reference

5'-CGCCATCATGGCGGTGCGGCGCTGCCTTCCAGTTCG-

 GTTAACACGGTGTAGGCTGGAGCTGCTTC-3' (sense) and 5'-GCGCGAGTTCTCAATAATGGCGCGTTTGGTGCGAACTTCGTGGTAATTCCGGGG ATCCGTCGACC-3' (antisense). In both cases, plasmid pKD4 containing an FRT-flanked kanamycin resistance element was used as a template. Each PCR product carrying a $45-\mathrm{bp}$ homologous region at each end was recombined into the chromosome of E. coli W3110 by using the Red plasmid pKD46 and selecting kanamycin resistant transformants. The plasmid $\mathrm{pCP20}$, which contains the thermally induced flp recombinase gene (Cherepanov and Wackernagel, 1995), was transformed into the ackA-pta::Km strain to eliminate the kanamycin resistance gene, and the double crossover mutant $\Delta a c k A$-pta was identified by PCR on the basis of its genotype. The PCR fragment containing the $y q h D$ mutation was transformed into E. coli $\Delta a c k A-p t a ~ b y ~ e l e c t r o p o r a t i o n ~ a n d ~$ double crossover mutants were selected to yield the $\Delta a c k A-$ pta $\Delta y q h D$ strain. Strains SH004, SH401, and SH501 were thengenerated by transforming the $\Delta a c k A-p t a \Delta y q h D$ strain with pET -dhaB-gdrAB-aldH, pET-dhaB-gdrAB-gabD4, and pET-dhaB-gdrABmutant gabD4, respectively.

Site-Directed and Saturation Mutagenesis

Mutations were introduced into a pETDuet-1 plasmid containing aldehyde dehydrogenase (gabD4) using the QuikChange ${ }^{\mathrm{TM}}$ XL site-directed mutagenesis kit (Stratagene) according to the manufacturer's protocol. Two overlapping complementary primers containing the desired nucleotide changes were designed for each mutation, and were as follows: E209Q sense 5^{\prime}-GTCGAGACCTGGCTGGG-3' and antisense 5^{\prime}-CCCAGCCAGGTCTCGAC-3'; E269Q sense 5^{\prime}-GCGCG-CCAGCATCTGGGCGGC-3' and antisense 5^{\prime}-GCCGCCCA-GATGCTGGCGCGC-3'; E335Q sense 5'-CCAGGAACTG-CTGCATTGAC- 3^{\prime} and antisense 5^{\prime}-GTCAATGCAGCAGTT-CCTGG-3'. The PCR reaction mixture consisted of 20 mM

Table II. 3-HP production of candidate aldehyde dehydrogenases.

| Aldehyde dehydrogenase | 3-HP $\left(\mathrm{gL}^{-1}\right)$ | Aldehyde dehydrogenase | 3- $\mathrm{HP}\left(\mathrm{g} \mathrm{L}^{-1}\right)$ | Aldehyde dehydrogenase | 3-HP $\left(\mathrm{gL} \mathrm{L}^{-1}\right)$ |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |
| SPC1_hapE (P. fluorescens) | n.d. | SPC7_sad (E. coli) | n.d. | SPC13_gox0499 (G. oxydans) | n.d. |
| SPC2_gabD4 (C. necator) | 9.75 ± 0.92 | SPC8_gabD3 (K. pneumoniae) | n.d. | SPC14_(G. oxydans) | n.d. |
| SPC3_gabD3 (C. necator) | 0.21 ± 0.13 | SPC9_rsph17025 (R. sphaeroides) | n.d. | SPC15_ald2 (S. cerevisiae) | n.d. |
| SPC4_gabD2 (C. necator) | n.d. | SPC10_uga2 (S. cerevisiae) | n.d. | SPC16_ald3 (S. cerevisiae) | n.d. |
| SPC5_gabD1 (C. necator) | n.d. | SPC11_gabD (P. aeruginosa) | n.d. | SPC17_ald4 (S. cerevisiae) | 0.17 ± 0.10 |
| SPC6_gabD (E. coli) | n.d. | SPC12_gabD (P. fluorescens) | 0.49 ± 0.37 | Control_aldH (E. coli) | 6.75 ± 0.49 |

[^1]Tris- $\mathrm{HCl}(\mathrm{pH} \mathrm{8.8}), 10 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 2 \mathrm{mM}$ $\mathrm{MgSO}_{4}, 0.1 \%$ Triton X100, $0.1 \mathrm{mg} / \mathrm{mL}$ nuclease-free bovine serum albumin (BSA), 20 ng of template DNA, 0.2 mM dNTPs, $1 \mu \mathrm{M}$ each of the complementary primers, and 1.5 units of Pfu DNA polymerase. The PCRs were performed on an Applied Biosystems (Forster City, CA) thermal cycler with a thermal cycling program consisting of 2 min at $95^{\circ} \mathrm{C}$ and 16 cycles of 30 s at $95^{\circ} \mathrm{C}, 60 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$, and 12 min at $68^{\circ} \mathrm{C}$. All PCR products were amplified a second time with two primers: 5^{\prime}-CATATGGAGAAAAAAATCTACCAGG- 3^{\prime} and 5^{\prime}-AGATC-TTCAGGCCTGGGTGATG-3'. The amplified products were digested with 10 units of $D p n \mathrm{I}$ at $37^{\circ} \mathrm{C}$ for 1 h prior to their use for transformation into E. coli W3110 cells. The mutations were confirmed by an automatic DNA sequencer (Applied Biosystems, Forster City, CA).

Saturation mutagenesis was applied to the nucleotides corresponding to amino acid positions 209 and 269 using primer pairs 5^{\prime}-CAGGTAGGTCGAGACNNN GCTGGGCA CGCCCCA- 3^{\prime} (sense) with 5^{\prime}-TGGGGCGTGCCCAGCNN NGTCTCGACCTA CCTG-3' (antisense), and 5^{\prime}-GAAGCGC GCCAGCATNNNGGCGGCGGGGTCGAT-3' (sense) with 5^{\prime}-ATCGACCCCGCCGCCNNNATGCTGGCGCGCTTC-3' (antisense), respectively, where NNN indicates the codon to be mutated. Following enzymatic characterization of the mutants, their DNA was recovered from E. coli cells and sequenced to confirm the positions of the mutations.

Determination of Enzyme Activity

The enzyme activities of wild type and mutant GabD4 were analyzed using 3-HPA in the presence of the coenzyme NAD^{+}, and the specific activity was measured (Leal et al., 2003; Jo et al., 2008). The reaction mixture, containing 50 mM potassium phosphate buffer (pH 7.0), 1 mM 2-mercaptoethanol, and $0.02 \mu \mathrm{M}$ enzyme, was incubated at $37^{\circ} \mathrm{C}$ for 5 min . The reaction was initiated by adding 2 mM of GabD4, 2 mM 3 -HPA, and $4 \mathrm{mM} \mathrm{NAD}{ }^{+}$. The enzyme activity was determined by measuring the reduction of NAD^{+}to NADH at 340 nm . The amount of NADH formed was determined using a molar extinction coefficient $\left(\Delta \varepsilon_{340}\right)$ of $6.22 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. One unit of GabD4 activity was defined as the amount of enzyme required to reduce $1 \mu \mathrm{~mol}$ of NAD^{+}to NADH in 1 min . All enzyme activities were determined in duplicate. The pH effects were determined in the range of $\mathrm{pH} 5-9$ at $45^{\circ} \mathrm{C}$ using 50 mM sodium acetate ($\mathrm{pH} 4 \sim 5$), potassium phosphate ($\mathrm{pH} 6 \sim 8$), and glycineNaOH buffers ($\mathrm{pH} 9 \sim 10$) and temperature effects were studied at pH 8.0 in the range of $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ using a spectrophotometer.

Flask-Scale Production of 3-HP by Recombinant E. coli

The recombinant strains were cultured in a modified M9 medium containing the following components per liter of deionized water: glycerol, $40 \mathrm{~g} ; \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.6 \mathrm{~g} ; \mathrm{NaCl}$, $1.5 \mathrm{~g} ; \mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 12.8 \mathrm{~g} ; \mathrm{K}_{2} \mathrm{HPO}_{4}, 17.4 \mathrm{~g} ; \mathrm{NH}_{4} \mathrm{Cl}, 2 \mathrm{~g}$; yeast extract, $0.5 \mathrm{~g} ; \mathrm{KH}_{2} \mathrm{PO}_{4}, 3 \mathrm{~g}$; and $\mathrm{CaCl}_{2}, 0.11 \mathrm{~g}$. The cells
were grown aerobically in 250 mL Erlenmeyer flasks containing 100 mL of the medium at $33^{\circ} \mathrm{C}$ and 250 rpm in an orbital incubator shaker. The cells were induced at $\sim 0.6 \mathrm{OD}_{600}$ with 0.05 mM isopropyl-beta-D-thiogalactopyranoside (IPTG), and $50 \mu \mathrm{M}$ of filter-sterilized vitamin B_{12} was added.

Production of 3-HP by Recombinant E. coli in a 5 L Bioreactor

All recombinant strains were cultured in a 5 L bioreactor with a 2 L working volume. The strains were cultured in M9 medium containing the following components per liter of deionized water: glycerol, 80 g ; glucose 40 g ; $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, $0.6 \mathrm{~g} ; \mathrm{NaCl}, 1.5 \mathrm{~g} ; \mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 12.8 \mathrm{~g} ; \mathrm{K}_{2} \mathrm{HPO}_{4}, 17.4 \mathrm{~g}$; $\mathrm{NH}_{4} \mathrm{Cl}, 2 \mathrm{~g}$; yeast extract, $0.5 \mathrm{~g} ; \mathrm{KH}_{2} \mathrm{PO}_{4}, 3 \mathrm{~g} ; \mathrm{CaCl}_{2}, 0.11 \mathrm{~g}$; and ampicillin, $50 \mathrm{mg} \mathrm{L}^{-1}$. Strains grown overnight were inoculated to an OD_{600} of 0.2 in the medium. Aerobic fermentation was carried out in a fed-batch mode by feeding with concentrated glycerol ($700 \mathrm{gL}^{-1}$) intermittently. The temperature and agitation were maintained at $35^{\circ} \mathrm{C}$ and 500 rpm , respectively. A constant flow of sterile air at 1 vvm was maintained throughout fermentation and the pH was kept at 7.0 with $5 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. The recombinant cells were induced at $\sim 0.8 \mathrm{OD}_{600}$ with 0.05 mM IPTG, and sterilized vitamin B_{12} was added. The glycerol and 3-HP concentrations were monitored periodically using high-performance liquid chromatography (HPLC), and fermentation was continued for 48 h .

Analytical Method

The concentrations of 3-HP, glycerol, and other metabolites in the culture broth were determined by HPLC using refractive index (RI) and photodiode array (PDA) detectors (Waters, MILFORD, MA) equipped with an Aminex HPX87 H column $(300 \mathrm{~mm} \times 7.8 \mathrm{~mm})$. Operating conditions $\left(0.5 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ in the mobile phase, column temperature $35^{\circ} \mathrm{C}$, flow rate $0.4 \mathrm{~mL} \mathrm{~min}^{-1}$) were determined to optimize peak separation. The glycerol and 3-HP were eluted at 16.2 min and 18.3 min , respectively.

Results and Discussion

Identification of a Novel Aldehyde Dehydrogenase for 3-HP Production

In order to examine the feasibility of the production of 3-HP from glycerol, we constructed 17 different plasmids (pSPC117) containing glycerol dehydratase (dhaB) and regeneration factor ($g d r A B$) from K. pneumoniae DSM2026 and aldehyde dehydrogenases from Pseudomonas fluorescens DSM50090, Cupriavidus necator ATCC 17699, E. coli K12 DSM18039, K. pneumoniae DSM2026, Rhodobacter sphaeroides ATCC17025, Saccharomyces cerevisiae ATCC7754, Pseudomonas aeruginosa ATCC27853, and Gluconobacter oxydans ATCC19357 (Table I). Each plasmid was transformed into E. coli W3110. The resulting pSPC1-17 strains were cultivated in modified M9
medium supplemented with 0.05 mM IPTG and $50 \mu \mathrm{M}$ vitamin B_{12} at $33^{\circ} \mathrm{C}$ for 48 h . 3-HP production in E. Coli transformed with pSPC 2 , which harbored gabD4 from Cupriavidus necator, was the highest among the 17 candidate aldehyde dehydrogenase genes, including the aldH control from E. coli (Table II).

Characterization of Enzymatic Properties and the Specific Activity of GabD4

The key enzymatic properties of GabD4 were characterized, including optimum pH and optimum temperature. GabD4 exhibited maximum activity at pH 8 (Fig. 2A), while activity was lower in both acidic and alkaline conditions. This implies that both acidic and alkaline broth conditions have a negative effect on the production of 3-HP in recombinant E. coli. With respect to temperature, GabD4 had the highest enzyme activity ($55.5 \mathrm{U} \mathrm{mg}^{-1}$ protein) at $37^{\circ} \mathrm{C}$ (Fig. 2A). This activity was higher than that reported for AldH from E. coli in a previous study (33.2 Umg^{-1} protein; Jo et al., 2008).

Figure 2. Optimum (A) pH and (B) temperature on GabD4 activity.

Site-Directed and Saturation Mutagenesis of gabD4 Based on 3D Structure

To improve both the specific activity of GabD4 toward 3-HPA and the 3-HP conversion yield, several gabD4 mutant strains were constructed by applying 3D structure modeling and mutagenesis techniques. The 3D structure of wild type GabD4 was constructed based on the template retrieved from PDB (3JZ4) by SWISS-MODEL homology modeling (Fig. 3). The active site of aldehyde dehydrogenases contains conserved cysteine residues, which directly interact with the aldehyde moiety of the substrate (Tu and Weiner, 1998). As shown in Figure 4, the substrate binds to an enzyme- NAD^{+}complex to form the thiohemiacetal intermediate, which is then oxidized to an acyl intermediate (Craig and Henry, 1999). To determine which cysteine residue is involved in substrate binding, four cysteine coding positions (117, 144, 169, and 283) of GabD4 were altered to alanine by sitedirected mutagenesis. Alanines were used for the substitutions because the methyl functional group of alanine cannot efficiently make a nucleophilic attack on the carbonyl carbon of the aldehyde. The dehydrogenase activities of the C117A, C144A, and C169A mutants were not significantly changed compared with native GabD4. In contrast, the C283A mutant lost its enzyme activity toward 3-HPA and produced a low concentration of 3-HP (Fig. 5A); thus, as the toxic intermediate (3-HPA) accumulated, the cell growth for C283A was significantly lower than that for other mutants (Fig. 5B). These results indicate that C 283 comprises the active site of GabD4.

Based on the crucial role of C283 for the conversion of aldehyde to carboxylic acid, six amino acid residues (E209, V210, E269, M270, L271, and E335) involved in substrate recognition were rationally redesigned around C283, while preserving all remaining positions as wild type. The specific

Figure 3. 3D-structural modeling of GabD4, showing the location of mutations; C283 is active site residue and E209, 269, and 335 were mutated positions.

Figure 4. Reaction mechanism for the dehydrogenase activity. E-SH indicates the enzyme with the active site cysteine as the nucleophile. E-NAD complex to form the thiohemiacetal intermediate, which is then oxidized to an acyl intermediate.

Figure 5. (A) 3-HP production and (B) cell growth of C117A, C144A, C169A, C283A, and GabD4; C117A ($)$) C144A (\mathbf{A}), C169A (\square), C283A (\square), and GabD4 (
activity of the GabD4 mutants was determined at pH 8 using the method reported by Jo et al. (2008) (Table III, Supplementary Table SI). Of these mutants, E209Q and E269Q showed the most remarkable increases in catalytic efficiency and substrate-dependent activity. V210L, M270R, L271Q, and E335Q showed the highest specific activity observed at their respective positions; however, their activities were lower than those of E209Q and E269Q. To further investigate positions 209 and 269, we generated a saturation

Table III. The highest specific activity of mutant GabD4 at position 209, $210,269,270,271$, and 335.

Aldehyde dehydrogenase	$V_{\max }$ $\left(\mathrm{U} \mathrm{mg}^{-1}\right.$ protein $)$	$k_{\mathrm{cat}} / K_{\mathrm{m}} \times 10^{3}$ $\left(\mathrm{M}^{-1} \mathrm{~S}^{-1}\right)$
AldH	38.16 ± 2.13	57.28 ± 3.69
GabD4	55.12 ± 1.37	71.48 ± 1.26
Mutant GabD4_E209Q	60.43 ± 1.42	93.22 ± 4.13
Mutant GabD4_V210L	49.23 ± 2.23	62.27 ± 2.57
Mutant GabD4_E269Q	74.16 ± 2.92	87.36 ± 2.04
Mutant GabD4_M270R	53.62 ± 1.48	55.76 ± 3.08
Mutant GabD4_L271Q	50.36 ± 2.78	44.24 ± 4.58
Mutant GabD4_E335Q	57.77 ± 1.54	49.33 ± 4.69

mutagenesis library for residues E209 and E269. Position 269 was observed to be more sensitive to amino acid replacement than position 209, since only three out of 19 mutants of position 269 had activity, while the rest were completely inactivated (Table IV). Moreover, only one of the three active mutants (E269Q) had a higher activity than the wild type (Table IV, Supplementary Table SII). In contrast, enzymatic activity was detected for all 19 mutants of position 209, indicating that this position is not as critical as position 269. The most active mutant assessed was the double mutant E209Q/E269Q, which showed a 1.4 -fold increase in catalytic activity when 3-HPA was used as a substrate. Together, these results show that mutations at positions 209 and 269, located near the active site residue (C283), can have great effects on the catalytic activity of GabD4.

Interestingly, the only mutation that was beneficial to enzyme activity was the substitution of glutamic acid with glutamine. Previous works (Wang and Weiner, 1995; Feldman and Weiner, 1972) suggested that deacylation was the ratelimiting step for horse liver aldehyde dehydrogenase and human ALDH2. In these studies, C302 was identified as the active site cysteine and E268 was identified as the general base that interacts with the active site cysteine or water during

Table IV. The specific activity of mutant GabD4 at position 209 and 269 by saturation mutagenesis.

	$V_{\max }$ Aldehyde dehydrogenase	$k_{\text {cat }} / K_{\mathrm{m}} \times 10^{3}$ $\left(\mathrm{M} \mathrm{mg}^{-1} \mathrm{~S}^{-1}\right)$
AldH	38.16 ± 2.13	57.28 ± 3.69
GabD4	55.12 ± 1.37	71.48 ± 1.26
Mutant GabD4_E209G	52.59 ± 1.69	76.35 ± 5.48
Mutant GabD4_E209A	54.05 ± 3.25	53.48 ± 1.09
Mutant GabD4_E209S	50.03 ± 1.38	63.75 ± 4.09
Mutant GabD4_E209T	53.37 ± 1.14	82.38 ± 2.89
Mutant GabD4_E209C	52.09 ± 1.41	72.13 ± 3.81
Mutant GabD4_E209V	53.81 ± 1.34	67.21 ± 0.89
Mutant GabD4_E209L	49.04 ± 2.83	98.01 ± 2.74
Mutant GabD4_E209I	53.13 ± 1.11	74.34 ± 3.94
Mutant GabD4_E209M	52.58 ± 1.22	63.04 ± 2.17
Mutant GabD4_E209P	48.36 ± 1.13	55.36 ± 5.12
Mutant GabD4_E209F	49.57 ± 2.85	51.48 ± 2.14
Mutant GabD4_E209Y	59.03 ± 1.44	44.16 ± 3.45
Mutant GabD4_E209W	53.86 ± 1.29	50.23 ± 4.25
Mutant GabD4_E209D	57.67 ± 2.02	74.25 ± 2.01
Mutant GabD4_E209N	53.56 ± 1.04	43.72 ± 4.27
Mutant GabD4_E209Q	60.43 ± 1.42	93.22 ± 4.13
Mutant GabD4_E209H	55.71 ± 1.18	60.35 ± 6.42
Mutant GabD4_E209K	54.60 ± 2.16	42.18 ± 1.62
Mutant GabD4_E209R	58.64 ± 1.02	55.69 ± 4.43
Mutant GabD4_E269Q	74.26 ± 2.92	87.36 ± 2.04
Mutant GabD4_E269K	56.28 ± 1.87	46.25 ± 3.84
Mutant GabD4_E269R	60.23 ± 2.41	55.47 ± 2.32
Mutant GabD4_E209,269Q	78.07 ± 1.78	162.34 ± 1.38
Mutant GabD4_E209,335Q	69.73 ± 2.01	93.46 ± 2.43
Mutant GabD4_E269,335Q	72.16 ± 2.48	141.09 ± 3.24
Mutant GabD4_E209,269,335Q	63.72 ± 2.30	69.48 ± 5.39

enzyme catalysis. More recently, additional conserved residues have been mutated (Li et al., 1997; Sheikh et al., 1997). These studies revealed that mutation of E399, a residue that interacts with the ribose moiety of NAD^{+}, to glutamine converted the rate limiting step from deacylation to hydride transfer. With respect to our results, it is possible that the active site cysteine residue (position 283) is positioned in a manner that is spatially similar to the conserved glutamic acid residues. The
rate-limiting step of the abovementioned AldH-mediated reaction may be related to the conformational difference of bound NAD^{+}and the relative flexibility of the nicotinamide ring. In this scenario, the substitution of glutamic acid for glutamine at position 209 and 269 of GabD4 would result in proper positioning for NAD^{+}or substrate binding, leading to increased activity towards 3-HPA (Supplementary Fig. S1).

Cell Growth and Flask-Scale 3-HP Production by Recombinant E. coli Containing Engineered GabD4

To evaluate the potential of the recombinants SH004 (E. coli W3110 harboring dhaB, gdrAB, and aldH), SH401 (E. coli W3110 harboring dhaB, gdrAB, and gabD4), and SH501 (E. coli W3110 harboring dhaB, gdrAB, and mutant gabD4) for 3-HP production, each strain was cultivated aerobically in a 100 mL of a modified M9 medium in a 250 mL Erlenmeyer flask. To reduce the accumulation of the major by-products of 3-HP production, two genes that are essential for their formation, ackA-pta and $y q h D$, were eliminated in the chromosomal DNA of E. coli W3110. AckA-pta is responsible for acetic acid formation from acetyl-CoA (Yun et al., 2005), while $y q h D$ is involved in 1,3-propanediol production from 3-HPA (Jarboe, 2011). As to 3-HP titer, $10.2 \mathrm{~g} \mathrm{~L}^{-1}$ of 3-HP was detected in the flask culture broth of E. coli W3110 with $\Delta a c k A-p t a$ and $\Delta y q h D$ (SH004), which is 38% increase compared to the 3-HP production ($7.4 \mathrm{~g} \mathrm{~L}^{-1}$) of wild type E. coli W3110 containing dhaB, gdrAB, and aldH (SH003). Concretely, E. coli W3110 containing dhaB, gdrAB, and aldH with $\Delta a c k A-p t a$ produced $8.2 \mathrm{~g} \mathrm{~L}^{-1}$ of 3-HP and E. coli W3110 containing dhaB, gdrAB, and aldH with $\Delta y q h D$ produced $9.2 \mathrm{~g} / \mathrm{L}$ of 3-HP, respectively. The flask-scale experiments showed that SH501 had higher 3-HP production efficiency than SH004 and SH401. The cell growth of all mutants showed no difference at an OD_{600} of $2.5-3$ (Fig. 6A). Under shake-flask culture conditions, SH 004 produced $10.2 \mathrm{gL}^{-1}$ of 3 -HP and SH401 produced $11.4 \mathrm{gL}^{-1}$. Most of the strains harboring the GabD4 mutants produced

Figure 6. (A) Cell growth and (B) 3-HP production of AldH, GabD4, and mutated GabD4 in flask; GabD4 ($)$), AldH (\square), E2090 (\square), E2690 ($\mathbf{(\Delta)}$), E3350 (x), E2090/E2690 (*), E209Q/ E2690 (1), E2690/E3350 (), E209Q/E2690/E3350 (\square) (C) Cell growth and 3-HP production of SH004, SH401, and SH501_E2090/E2690 in 5 L bioreactor; open circle (o) OD of SH401,
 close triangle($\mathbf{\Delta}$) 3-HP production of SH004.

Table V. Recent studies for biological production of 3-HP.

Carbon source	Recombinant strain	Titer (LL^{-1})	Productivity ($\mathrm{g}^{-1} \mathrm{~h}^{-1}$)	Reference
Glycerol	Lactobacillus collinoides 17	2.8	0.07	Garai-Ibabe et al., 2008
Glycerol	E. coli BL21_dhaB_aldH	0.6	0.02	Raj et al., 2008
Glycerol	E. coli BL21_dhaB_aldH	31	0.43	Raj et al., 2009
Glycerol	E. coli SH254_dhaB_KGSADH	38.7	0.54	Rathnasingh et al., 2009
Glucose	E. coli (BX3_0240)	49	0.71	Lynch et al., 2011
Glycerol	K. pneumoniae AK_pduP	1.4	0.06	Luo et al., 2011
Glycerol	K. pneumoniae Cu	1.9	0.08	Luo et al., 2012
Glycerol	K. pneumoniae WM3 pUC18kan_aldHec	24.4	1.02	Huang et al., 2012
Glycerol	K. pneumoniae WM3 pUC18kan_aldHec	48.9	1.75	Huang et al., 2013
Glycerol	K. pneumoniae J2B Δ dhaT_ KGSADH	16.3	0.3	Ko et al., 2012
Glycerol	K. pneumoniae Δ dhaT $\Delta y q h D _d h a B _p u u C$	28.1	0.58	Ashok et al., 2012
Glycerol	K. pneumoniae J2BD ldhA_KGSADH	22.7	0.38	Kumar et al., 2012
Glucose \& glycerol	E. coli BL21_dhaB_dhaR_aldH	14.3	0.26	Kwak et al., 2012
Glucose \& glycerol	E. coli W3110 Δ ackA-pta $\Delta y q h D _d h a B _m u t a n t ~ g a b D 4 ~$	71.9	1.8	This study

3-HP more efficiently than SH004 and SH401, particularly GabD4_ E209Q/E269Q, which produced $16.7 \mathrm{~g} \mathrm{~L}^{-1}$ of 3-HP (Fig. 6B). This is 1.6 -fold higher than the 3-HP production by strain SH401, suggesting that the activity of GabD4_ E209Q/ E269Q is more efficient than those of AldH or wild type GabD4, and that its balance with DhaB is more suitable for improving the titer of 3-HP production from glycerol.

Cultivation of the SH501_E2090/E2690 in a 5L Bioreactor

In the flask-scale experiments, strain SH501_E209Q/E269Q exhibited the highest 3-HP production, at $16.7 \mathrm{~g} \mathrm{~L}^{-1}$. In order to further investigate the potential of SH501_E209Q/E269Q, the strain was cultured at pH 7.0 in a 5 L bioreactor with a working volume of 2 L (Fig. 6C). The initial glycerol concentration was $80 \mathrm{~g} / \mathrm{L}$ and concentrated glycerol ($700 \mathrm{~g} \mathrm{~L}^{-1}$) was added to the culture broth as a feeding substrate to maintain the glycerol concentration. After 40 h of culture, the titers of SH004 and SH401 were $50.8 \mathrm{~g} / \mathrm{L}$ and $60.1 \mathrm{~g} / \mathrm{L}$, respectively. The titer of SH501_E209Q/E269Q was $71.9 \mathrm{gL}^{-1}$, which is approximately 4.3 -fold higher than the titer obtained from the flask culture, and the productivity was $1.8 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$. This titer is higher than the corresponding values previously reported by other researchers (Table V) (Kumar et al., 2013). Although our approach to produce 3HP from glycerol and glucose is similar to those used by other researchers, the present study employed different aldehyde dehydrogenases (gabD4) and engineered the enzyme to enhance its activity. High level of 3-HP productivity ($2.7 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$) was observed at $16-37 \mathrm{~h}$. A decrease in the specific rate of 3-HP production at $37-40 \mathrm{~h}$ may be linked to the decrease in both DhaB and the GabD4_E209Q/E269Q activities. This decrease could also be related to a redox imbalance resulting from inadequate NAD^{+}regeneration, which is essential for GabD4 activity. However, the specific rate of 3-HP production was maintained at high levels for up to 37 h , even though the activities of both DhaB and the GabD4_ E209Q/E269Q had deteriorated significantly at this time.

Conclusions

In this study, we report two parallel methods for improving 3-HP production from glycerol in E. coli. The utilization of a novel glycerol dehydrogenase, GabD4 from Cupriavidus necator, resulted in an 18.3% increase in 3-HP production, yielding final 3-HP titers of $60.1 \mathrm{~g} \mathrm{~L}^{-1}$. Systematic engineering of GabD4, on the other hand, resulted in a 41.5% increase in 3-HP production, yielding final titers of $71.9 \mathrm{~g} \mathrm{~L}^{-1}$. Furthermore, a combination of these strategies led to an increase in 3-HP productivity. Further work, such as fine-tuning of enzyme expression, scale-up, and process engineering, will be necessary to further increase the titer and productivity to levels that are sufficient for commercialization. However, our successful enhancement of 3-HP production bodes well for continued engineering efforts, as our engineering approach is directly applicable to the highlevel production of many commercially important compounds using microbial biotechnology.

References

Ashok S, Sankaranarayanan M, Ko Y, Jae KE, Ainala SK, Kumar V, Park SH. 2012. Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae $\triangle d h a T \triangle y q h D$ which can produce vitamin B_{12} naturally. Biotechnol Bioeng 110:511-524.
Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: Tc^{R} and Km^{R} cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9-14.
Craig JM, Henry W. 1999. Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases. Protein Sci 8:1922-1929.
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97:6640-6645.
Feldman RI, Weiner H. 1972. Horse liver aldehyde dehydrogenase. II: Kinetics and mechanistic implications of the dehydrogenase and esterase activity. J Biol Chem 247:267-272.
Forrest AK, Sierra R, Holtzapple MT. 2010. Effect of biodiesel glycerol type and fermentor configuration on mixed-acid fermentations. Bioresour Technol 101:9185-9189.
Garai-Ibabe G, Ibarburu I, Berregi A, Claisse O, Lonvaud-Funel A, Irastorza A, Dueñas MT. 2008. Glycerol metabolism and bitterness producing
lactic acid bacteria in cidermaking. Int J Food Microbiol 121: 253-261.
Hall RH, Stern ES. 1950. Acid-catalysed hydration of acrylaldehyde: Kinetics of the reaction and isolation of β-hydroxypropionaldehyde. J Chem Soc 490-498.
Huang Y, Li Z, Shimizu K, Ye Q. 2012. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumonia. Bioresour Technol 103: 351-359.
Huang Y, Li Z, Shimizu K, Ye Q. 2013. Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under micro-aerobic conditions. Bioresour Technol 128:505-512.
Jarboe LR. 2011. yqhD: A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89(2):249-257.
Jo JE, Mohanraj S, Rathnasingh C, Selvakumar E, Jung WC, Park SH. 2008. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropion-aldehyde as a substrate. Appl Microbiol Biotechnol 81:51-60.
Ko Y, Ashok S, Zhou S, Kumar V, Park SH. 2012. Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumonia. Process Biochem 47:1135-1143.
Kumar V, Ashok S, Park SH. 2013. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945-961.
Kumar V, Mugesh S, Durgapal M, Zhou M, Ko Y, Ashok S, Sarkar R, Park SH. 2012. Simultaneous production of 3-hydroxypropionic acid and 1,3propanediol from glycerol using resting cell system of D-lactic acid deficient mutant of Klebsiella pneumoniae with overexpression of KGSADH. Bioresour Technol 103:351-359.
Kwak S, Park YC, Seo JH. 2012. Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. Bioresour Technol 135:432-439.
Leal NA, Havemann GD, Bobik TA. 2003. PduP is a coenzyme-A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353361.

Li N, Sheikh S, Weiner H. 1997. Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase. J Biol Chem 272:18823-18826.
Luo LH, Kim CH, Heo SY, Oh BR, Hong WK, Kim S, Kim DH, Seo JW. 2012. Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumonia. Bioresour Technol 103:1-6.
Luo LH, Seo JW, Oh BR, Seo PS, Heo SY, Hong WK, Kim DH, Kim CH. 2011. Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain
defective in the oxidative pathway. J Ind Microbiol Biotechnol 38: 991-999.
Lynch MD, Gill RT, Warnecke LT. 2011. Method for producing 3hydroxypropionic acid and other products. PCT Patent 038:364A1.
Nitayavardhana S, Khanal SK. 2011. Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery. Bioresour Technol 102:5808-5814.
Raj SM, Rathnasingh C, Jo JE, Park SH. 2008. Production of 3hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440-1446.
Raj SM, Rathnasingh C, Jung WC, Park SH. 2009. Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl Microbiol Biotechnol 84:649-657.
Rathnasingh C, Raj SM, Jo JE, Park SH. 2009. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3hydroxypropionic acid from glycerol. Biotechno Bioeng 104:729-739.
Sambrook J, Fritsch EF, Maniatis T. 2001. Molecular cloning: A laboratory manual, 3rd edn. Cold Sptring Harbor, NY: Cold Spring Harbor Laboratory.
Sheikh S, Ni L, Hurley TD, Weiner H. 1997. The potential roles of the conserved amino acids in human liver mitochondrial aldehyde dehydrogenase. J Biol Chem 272:18817-18822.
Slininger PJ, Bothast RJ, Smiley KL. 1983. Production of 3-hydroxypropionaldehyde from glycerol. Appl Environ Microbiol 46:62-67.
True HL, Lindquist SL. 2000. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477-483.
Tu G, Weiner H. 1998. Identification of the cysteine residue in the active site of horse liver mitochondrial aldehyde dehydrogenase. J Biol Chem 25:1212-1217.
Vollenweider S, Lacroix C. 2004. 3-Hydroxypropion-aldehyde: Applications and perspective. Appl Microbiol Biotechnol 64:16-27.
Wang X, Weiner H. 1995. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry 34:237-243.
Werpy T, Petersen G, Aden A, et al. 2004. Top value added chemicals from biomass. Volume 1: result of screening for potential candidates from sugar and synthesis gas; 2004 [cited 2008 Feb 24]. Available from: http:// wwwl.eere.energy.gov/biomass/pdfs/35523.pdf
Yun NR, San KY, Bennett GN. 2005. Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenasedeficient Escherichia coli. J Appl Microbiol 99:1404-1412.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher's web-site.

[^0]: Correspondence to: K.M. Cho
 Received 12 March 2014; Revision received 3 August 2014; Accepted 18 August 2014 Accepted manuscript online 28 August 2014;
 Article first published online 13 October 2014 in Wiley Online Library
 (http://onlinelibrary.wiley.com/doi/10.1002/bit.25444/abstract).
 DOI 10.1002/bit. 25444

[^1]: "n.d." stands for "not detected" at the Minimum Reporting Level (the concentration of 3-HP $<0.001 \mathrm{~g} \mathrm{~L}^{-1}$).

