

Protein engineering

- Protein engineering is the design of new enzymes or proteins with new or desirable functions.

- It is based on the use of recombinant DNA technology to change amino acid sequences.

Protein engineering

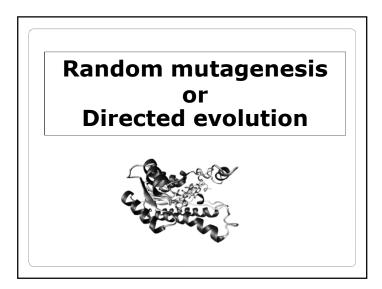
- -> Mutagenesis used for modifying proteins Replacements on protein level -> mutations on DNA level
- Assumption : Natural sequence can be modified to improve a certain function of protein

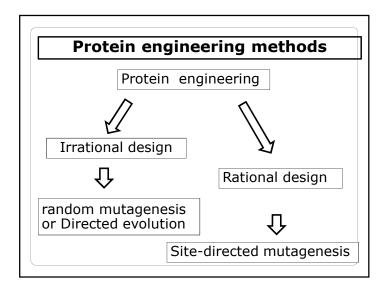
What can be engineered in Proteins ?

- -> 1. Folding (+Structure):
- Thermodynamic Stability

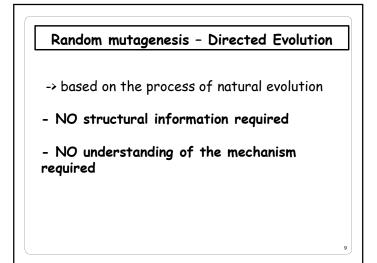
 (Equilibrium between: Native ⇔ Unfolded state)
- 2. Thermal and Environmental Stability (Temperature, pH, Solvent, Detergents, Salt)

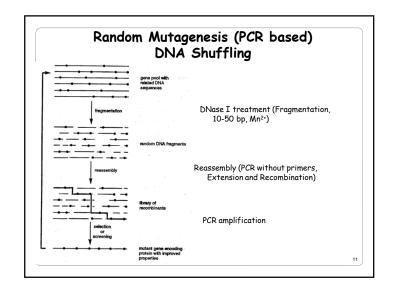
What can be engineered in Proteins ?

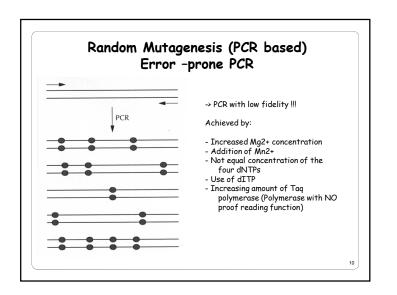

->2. Function:

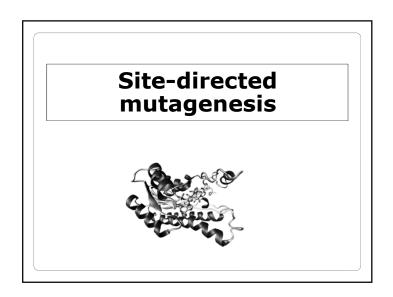

1. Binding ;

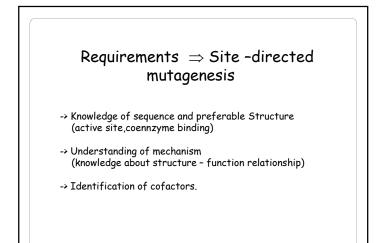
: Interaction of a protein with its surroundings.

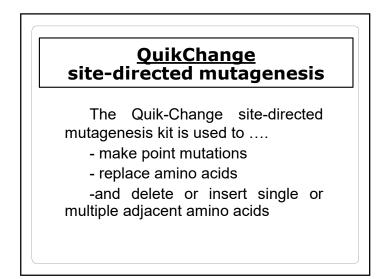

2. Catalysis ;

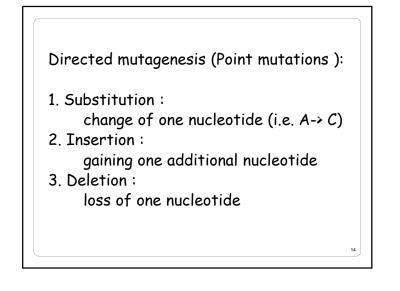

: Catalysis is the chemical reaction brought about by a catalyst.

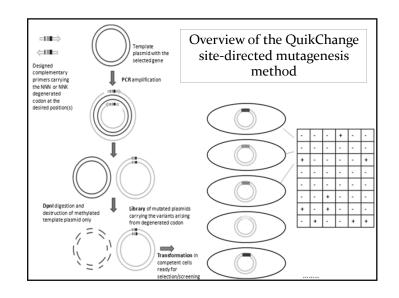


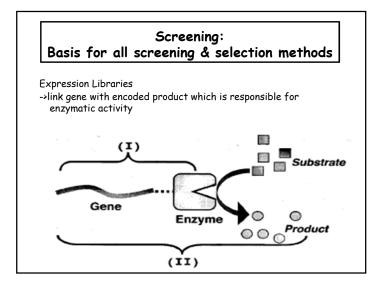


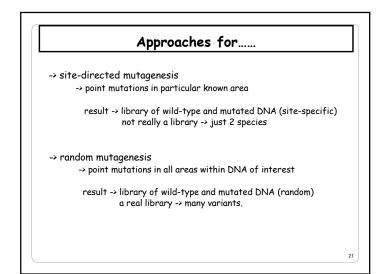

- Random mutagenesis is a powerful tool for generating enzymes, proteins, entire metabolic pathways, or even entire genomes with desired or improved properties.
- This technology is used to evolve genes in vitro through an iterative process consisting of recombinant generation.
- Coupled with the development of powerful highthroughput screening or selection methods, this technique has been successfully used to solve problems in protein engineering.











me	$k_{\rm cat}$ (s ⁻¹)	K_m (mM)	$k_{\rm cat}/K_m~({\rm s}^{-1}~{\rm M}^{-1})$
51	4.7	2.5	1,860
51	4.0	1.2	3,200
51	1.8	0.019	95,800
51	4.0	1.2	3,200

Enzyme		A	mino a	cid at	positio	n:		No.	% Activity	<i>T_m</i> (°C)
	3	9	21	54	97	142	164	of -S-S-		
wt	Ile	Ile	Thr	Cys	Cys	Thr	Leu	0	100	41.9
pwt	Ile	Ile	Thr	Thr	Ala	Thr	Leu	0	100	41.9
A	Cys	Ile	Thr	Thr	Cys	Thr	Leu	1	96	46.7
В	Ile	Cys	Thr	Thr	Ala	Thr	Cys	1	106	48.3
С	Ile	Ile	Cys	Thr	Ala	Cys	Leu	1	0	52.9
D	Cys	Cys	Thr	Thr	Cys	Thr	Cys	2	95	57.6
E	Ile	Cys	Cys	Thr	Ala	Cys	Cys	2	0	58.9
F	Cys	Cys	Cys	Thr	Cys	Cys	Cys	3	0	65.5
wt, wild	-type T4	lysozym	ie; pwt, p		vild-type	enzyme		ugh F, six eng ermostability	ineered cyste).	ine vari

Half-life (min)	A	o acid sition:	Enzyme	
		78	14	
13		Asn	Asn	Wild type
17		Thr	Asn	Variant A
16		Ile	Asn	Variant B
25		Ile	Thr	Variant C
11		Asn	Asp	Variant D
		Thr Ile Ile	Asn Asn Thr	Variant A Variant B Variant C Variant D

22

Protein Engineering -Applications

• A variety of protein engineering applications have been reported in the literature.

• These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications.

23

Protein Engineering - Applications

 Site-directed mutagenesis -> used to alter a single property.

Problem : changing one property -> disrupts another characteristics.

• **Random mutagenesis** (Molecular breeding) -> alteration of multiple properties.

> Food and detergent industry applications

- Protein engineering methods to design new enzymes for enzyme biotechnological industries.

- Those properties include thermostability, specificity and catalytic efficiency.

- Additionally, the design and production of new enzymes for food industry by using protein engineering was discussed to produce new food ingredients.

Environmental applications

-Recently genetic methods and strategies for designing microorganisms to eliminate environmental pollutants.

- Those methods and strategies included gene expression regulation to provide high catalytic activity under environmental stress conditions.

- such as the presence of a toxic compound, rational changes introduced in regulatory proteins that control catabolic activities, creation of new metabolic routes and combinations thereof.

Medical applications

- Medical use of protein engineering for cancer treatment.

- The use of novel antibodies as anticancer agents and protein engineering methods are used to modify antibodies to target cancer cells for clinical applications.

- Additionally, multifunctional and smart drug vehicles can be produced at the nanoscale, by protein engineering

